CHEM40111/CHEM40121 Molecular magnetism 3 Magnetic coupling

The University of Manchester

Nick Chilton G.012 Dover St Building T: 54584 E: nicholas.chilton@manchester.ac.uk

Course Overview

 Fundamentals Motivation Origins of magnetism Bulk magnetism 	 5 Single-molecule magnets I Single-molecule magnets Electrostatic model
 2 Quantum mechanics of magnetism Zeeman effect Statistical mechanics Magnetisation Magnetic susceptibility 	 6 Single-molecule magnets II Measuring magnetic relaxation Relaxation mechanisms Latest research
 3 Magnetic coupling • Exchange Hamiltonian • Experimental measurements • Vector coupling 	 7 Magnetic resonance imaging Paramagnetic NMR Magnetic resonance imaging Latest research
 4 Magnetic anisotropy 2ero-field splitting Impact on properties Lanthanides Spin-orbit coupling 	 8 Quantum information processing Quantum information DiVincenzo criteria Latest research Question time

Intended learning outcomes

- 1. Explain the origin of magnetism arising from electrons in atoms and molecules using formal quantum-mechanical terms
- 2. Compare and contrast the electronic structure of metal ions in molecules and their magnetic properties, for metals across the periodic table
- 3. Select and apply appropriate models and methods to calculate molecular magnetic properties such as magnetisation, magnetic susceptibility and paramagnetic NMR shift
- 4. Deconstruct topical examples of molecular magnetism including single-molecule magnetism, molecular quantum information processing and MRI contrast agents

- Magnetic interactions between spins arise from:
 - Direct exchange (overlap of magnetic orbitals)
 - Superexchange (interaction through non-magnetic atoms)
 - Dipolar interactions (through space)
- Generally, we just consider the total exchange interaction
- Example: a dimer of two S = 1/2 ions

$$\begin{split} \widehat{H} &= -2J\widehat{\widehat{S}}_{A} \cdot \widehat{\widehat{S}}_{B} & \downarrow \qquad \qquad \downarrow \uparrow \\ \left| m_{S_{A}}, m_{S_{B}} \right\rangle \in \begin{cases} |-1/2, -1/2\rangle, |-1/2, +1/2\rangle, \\ |+1/2, -1/2\rangle, |+1/2, +1/2\rangle \end{cases} \\ \uparrow \qquad \qquad \end{split}$$

• So what are the matrix elements of the magnetic exchange?

$$-2J\langle m_{S_A}', m_{S_B}' | \vec{\hat{S}}_A \cdot \vec{\hat{S}}_B | m_{S_A}, m_{S_B} \rangle$$

• Example: two S = 1/2 ions

If $S_A + S_B$ is ground state, interaction is ferromagnetic If $|S_A - S_B|$ is ground state, interaction is antiferromagnetic

- For either interaction, both states exist
- The strength of the interaction determines the energy between the different states

• We can use the temperature dependence of the magnetic susceptibility to measure the strength of the exchange

- If χT rises \rightarrow ferromagnetic ground state
- If χT falls \rightarrow antiferromagnetic ground state

• At low temperatures, χT can reveal ground spin state

• At low temperatures and high fields, *M* also gives ground state

- At high temperatures, χT approaches 'uncoupled' value
 - Not really uncoupled! The *sum of the Curie contributions of each spin*

- In simple cases, the ground spin state of a molecule S_T can be easily determined by *vector coupling*
- Example: Fe₄ star
 - Fe(III), d⁵
 - Octahedral, S = 5/2
 - Nearest neighbour antiferromagnetic exchange

$$-S_{\rm T} = 3 \times (5/2) - 5/2 = 5$$

- What is the high temperature limit of χT ? FEED FORWARD:
- What is the low temperature limit of χT ? Don't forget units!!
- What is the high field, low temperature limit of *M*?

Problem set:

- Example: Mn₆ ring (symmetric)
 - If the high temperature limit of $\chi T = 18 \text{ cm}^3 \text{ mol}^{-1} \text{ K}$
 - And the low temperature limit of $\chi T = 78 \text{ cm}^3 \text{ mol}^{-1} \text{ K}$
 - And the high field, low temperature limit of $M = 24 \text{ N}_{\text{A}} \mu_{\text{B}}$

- Is the nearest neighbour exchange anti- or ferromagnetic?
- What is the spin ground state of the molecule, S_T ?
- What are the Mn spins, S_{Mn} ?
- What is a possible oxidation state and geometry for Mn?